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Abstract

Coupled heat transfers in hollow structures uniformly heated from below or from above are numerically investigated. Discussions of the results
are for structures formed by a range of 3 identical rectangular cavities with end vertical side walls of the structure assumed adiabatic or submitted
to periodic conditions. The Boussinesq approximation is invoked and the flows are considered laminar and two-dimensional for the whole range
of parameters considered. Conduction heat transfer in the solid partitions and surface radiation amongst grey diffuse surfaces are accounted for.
The conservation equations are solved by a finite difference method and the pressure–velocity coupling solved by the SIMPLE algorithm.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Hollow structures are used in many practical applications
such as building components, solar collectors, thermal energy
storage systems, and so on. In general, the heat transfer in
such structures is done simultaneously by conduction, natural
convection and radiation. The coupling problems between the
three modes of heat transfer have received last years a great
attention. However, the available studies in the literature are
generally limited to simple configurations consisting in rec-
tangular cavities with one or several conducting walls. Earlier
investigations were conducted by Balvanz and Kuehn [1] and
Kim and Viskanta [2] on the interaction between the natural
convection in a square cavity and the heat conduction in the
adjacent walls. Effects of surface radiation on natural convec-
tion in a square enclosure filled with air were studied by Balaji
and Venkateshan [3,4], Akiyama and Chong [5], Ramesh and
Venkateshan [6] and Ramesh et al. [7]. In these studies, it has
been shown that natural convection heat transfer is significantly
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reduced by conduction in the walls and/or radiation exchange
between the cavity surfaces. Coupled heat transfers by conduc-
tion, natural convection and radiation in cellular structures with
two vertical series of square cavities has been studied numeri-
cally by Abdelbaki and Zrikem [8]. Application was presented
for building walls made of hollow clay tiles. Later, numerical
solution of combined heat transfers in hollow clay tiles, with
two air cells deep, submitted to transient thermal excitations
was performed by Abdelbaki et al. [9]. Based on the simulation
results the authors derived empirical transfer function coeffi-
cients for the hollow clay tiles by applying an identification
technique.

However, in all works cited previously the studied struc-
tures were differentially heated by assuming the vertical sides
isothermal while the horizontal ones are adiabatic. The prob-
lems where the hollow structures are heated from below are not
well documented. Most of the available works studied the nat-
ural convection in rectangular cavities heated partially [10] or
entirely [11–13] from below.

The aim of this paper is to study numerically the coupling
between conduction, natural convection and surface radiation
in horizontal hollow structures heated from below or above.
These structures are formed by a series of rectangular cavities
filled with air and having conducting partitions. The numerical
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Nomenclature

A aspect ratio of the hollow structure, H/L

Ac aspect ratio of the inner cavity, h/l

dF view factor between finite surfaces
dS finite area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

E incident radiative heat flux . . . . . . . . . . . . . . W m−2

ex vertical partition thickness . . . . . . . . . . . . . . . . . . . m
ey horizontal partition thickness . . . . . . . . . . . . . . . . . m
G temperature ratio, To/Ti

H structure height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
h cavity height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
J radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

J ′ dimensionless radiosity, J/(σT 4
o )

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

L structure depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
l cavity width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Nk thermal conductivity ratio, kf /ks

Nr radiation to conduction number, (σT 4
o )H/ks�T

Nu Nusselt number
P dimensionless pressure, (p + ρ0gy)/ρ0(αf /H)2

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number, ν/αf

Qa dimensionless average heat flux
Q average heat flux, ks�T

H
Qa . . . . . . . . . . . . . . W m−2

qr,k net radiative heat flux at surface k . . . . . . . . W m−2

Qrk dimensionless net radiative heat flux at surface k,
qr,k/σT 4

o

r position on the cavity surface
r ′ dimensionless position associated with r

Ra Rayleigh number, gβ�T H 3

ναf

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

�T temperature difference, (To − Ti) if To > Ti ;
(Ti − To) if To < Ti . . . . . . . . . . . . . . . . . . . . . . . . . K

U,V dimensionless velocity components in x and y di-
rections, (u, v)/(αf /H)

X,Y dimensionless Cartesian coordinates in x and y di-
rections, (x, y)/H

Xc position on the internal horizontal face of a cavity
Yc position on the internal vertical face of a cavity
Y0 position in y direction of the lower horizontal side

of a cavity

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

β thermal expansion coefficient . . . . . . . . . . . . . . K−1

ε cavity surface emissivity
η dimensionless coordinate normal to a cavity surface
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ Stephan–Boltzmann constant . . . . . . . . W m−2 K−4

θ dimensionless temperature, (T − Ti)/�T

Ψ dimensionless stream function
τ dimensionless time, t/(H 2/αf )

Subscripts

a above
b below
conv convection
f fluid
i inside
o outside
rad radiative
s solid
code is tested by comparing its results with those reported in
the literature for three different cases. Application results are
presented for the hollow concrete blocks mostly used in the
construction of building roofs using practical values of the ther-
mal excitations. Overall thermal conductances are generated for
the hollow concrete blocks for the two cases of heating (from
below or above).

2. Mathematical formulation

2.1. Studied configuration and governing equations

The studied configuration, sketched in Fig. 1, is formed by
a range of Nx rectangular cavities of width l and height h sur-
rounded by solid partitions. The top and bottom sides of the hol-
low structure are considered isothermal and are maintained at
temperatures To and Ti respectively. The structure vertical sides
are considered adiabatic or submitted to periodicity conditions.
In formulating governing equations, the problem is considered
laminar and two-dimensional. The solid and fluid properties are
assumed to be constant except for the density in the buoyancy
term where the Boussinesq approximation is utilized. Viscous
heat dissipation in the fluid is neglected. The fluid is assumed
to be non-participating to radiation and the cavities inside sur-
faces are considered diffuse-grey. The governing equations are
written in dimensionless form as:

∂U

∂X
+ ∂V

∂Y
= 0 (1)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ Pr

(
∂2U

∂X2
+ ∂2U

∂Y 2

)
(2)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y

= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
+ Ra Pr θf (3)

∂θf

∂τ
+ U

∂θf

∂X
+ V

∂θf

∂Y
= ∂2θf

∂X2
+ ∂2θf

∂Y 2
(4)

where U and V are the dimensionless velocity components in X

and Y directions respectively, P is the pressure, θf is the fluid
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Fig. 1. Schematic diagram of the studied hollow structure.
temperature, Pr is the Prandtl number and Ra is the Rayleigh
number given by:

Ra = gβH 3�T

ν2
Pr

The dimensionless equation of heat conduction in the solid
walls is:

αf

αs

∂θs

∂τ
= ∂2θs

∂X2
+ ∂2θs

∂Y 2
(5)

where αf and αs are the fluid and the solid thermal diffusivities
respectively and θs is the dimensionless solid temperature. The
boundary conditions of the problem are:

• U = V = 0 on the inner sides of each cavity

•

⎧⎪⎨
⎪⎩

θs(X,0) = 1 and θs(X,1) = 0 (0 � X � L/H)

for the heating from below case
θs(X,0) = 0 and θs(X,1) = 1 (0 � X � L/H)

for the heating from above case

•

⎧⎪⎨
⎪⎩

θs(0, Y ) = θs(L/H,Y ) (0 � Y � 1)

for the periodicity condition
∂θs

∂X

∣∣
X=0;L/H

= 0 (0 � Y � 1)

for the adiabaticity condition

The continuity of the temperature and the heat flux at the
fluid–wall interfaces gives:

θs(X,Y ) = θf (X,Y ) (6)

−∂θs

∂η
= −Nk

∂θf

∂η
+ NrQr (7)

where η represents the dimensionless coordinate normal to the
wall, Nk is the thermal conductivity ratio kf /ks , Qr is the
dimensionless radiative heat flux and Nr is the dimensionless
radiation to conduction parameter defined by:

Nr = σT 4
o H

ks�T

The dimensionless radiative heat flux Qr is related to the
radiative heat flux qr by:

Qr = qr

4
σTo
The net radiative heat flux qr,k(rk) exchanged by the finite
area dSk , located at a position rk on the surface k, is given by:

qr,k(rk) = Jk(rk) − Ek(rk) (8)

where Jk(rk) is the radiosity and Ek(rk) is the incident radiative
heat flux on the surface dSk given respectively by:

Jk(rk) = εkσ
(
Tk(rk)

)4 + (1 − εk)Ek(rk) (9)

Ek(rk) =
4∑

j=1

∫
Aj

Jj (rj )dFdSk−dSj (rk,rj ) (10)

where εk is the emissivity of the surface k and dFdSk−dSj
is the

view factor between the finite surfaces dSk and dSj located at
rk and rj respectively. Taking into account Eqs. (8) to (10), the
dimensionless radiative heat flux can be expressed as:

Qr,k(r
′
k) = εk

(∣∣∣∣1 − 1

G

∣∣∣∣θk(r
′
k) + 1

G

)4

− εk

4∑
j=1

∫
Sj

J ′
j (r

′
j )dFdSk−dSj

(11)

where G is the temperature ratio To/Ti , J ′
j (rj ) is the dimen-

sionless radiosity at the position rj on surface j . By dividing
the walls into finite isothermal surfaces, Eq. (11) leads to a set
of linear equation where the unknowns are the dimensionless
radiosities J ′

j (rj ).
The dimensionless average heat flux across the structure is

given by:

Qa = −H

L

L
H∫

0

∂θs

∂Y

∣∣∣∣
Y=0

dX = −H

L

L
H∫

0

∂θs

∂Y

∣∣∣∣
Y=1

dX (12)

To evaluate the rate of convective heat transfer on the inter-
nal horizontal surface of a cavity, the average Nusselt number
is given by:

Nu = −H

l

l
H∫

0

(
∂θf

∂Y

)
Y=Y0

dX (13)

The dimensionless convective heat flux received by the fluid
is given by:
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Qconv = Nu for Y = Y0 and

Qconv = −Nu for Y = (l/L − Y0)

2.2. Method of solution and parameters of simulation

Governing equations are discretised using the finites differ-
ences method based on the control volumes approach with a
power law scheme and are solved by the SIMPLE algorithm.
The resulting system of algebraic equations is solved by the
Tri-Diagonal-Matrix-Algorithm. To accelerate the convergence
of solutions, the governing equations are solved in their insta-
tionary form.

2.2.1. Validation of the calculation code
The numerical code has been validated by comparing its re-

sults with those reported in the literature in the two following
different cases:

(i) Interaction between natural convection and radiation in a
square cavity. The average convective and radiative Nusselt
numbers calculated at the hot surface of the enclosure for
different values of the emissivity ε and for 103 � Ra � 106

are compared in Figs. 2 and 3 with those obtained by
Akiyama and Chong [5] and by Balaji and Venkateshan [4].
As shown there is a good agreement between the different
results.

Fig. 2. Variations of the average Nusselt convection number as a function of Ra
for ε = 0 and ε = 1.

Fig. 3. Variations of the average Nusselt radiation number as a function of ε for
different values of Ra.
(ii) Natural convection in a heated from below square cavity.
Results given in Table 1 show that the Nusselt number
and the maximum stream function obtained for different
Rayleigh numbers in the present study are in good agree-
ment with those predicted in the works of Lakhal and
Hasnaoui [11], Strada and Heinrich [12] and Hamady et
al. [13].

2.2.2. Parameters of the simulation
The numerical procedure presented in this paper is applied to

predict heat exchanges through the hollow concrete blocks used
in practice to construct building roofs. Results are presented for
the three types of hollow block mostly used in Morocco, whose
geometrical parameters are given in Table 2. Each hollow block
is formed by three rectangular cells surrounded by concrete par-
titions. The hollow block considered differ by the aspect ratio
of the internal cavities Ac which is a main geometrical parame-
ter because it influences significantly the heat exchange and the
fluid motion in the cavities. To realize a compromise between
accuracy and computation time, a study on the effects of both
grid spacing and time step on the simulation results has been
conducted for each type of hollow blocks. This study leads to
the uniform grid given in Table 3. The dimensionless time used
in the simulation is 10−5. The convergence criterion is based

Table 1
Comparison of results of the present work with those of Lakhal and Has-
naoui [11], Strada and Heinrich [12] and Hamady et al. [13] in the case of a
square cell heated from below

Ra Strada and
Heinrich (1982)

Lakhal and
Hasnaoui (1994)

Hamady et al.
(1989)

Present code

104 Nu = 2.153 – – Nu = 2.164
1.5 × 104 – – Nu = 2.34 Nu = 2.321
5.6 × 104 – – Nu = 3.78 Nu = 3.675
105 Nu = 3.888 Nu = 4.00 Nu = 4.01 Nu = 3.917

– Ψmax = 25.9 – Ψmax = 25.1
1.1 × 105 – – Nu = 4.50 Nu = 4.282
2.1 × 105 – – Nu = 5.60 Nu = 5.512
106 – Nu = 6.91 – Nu = 6.702

– Ψmax = 75.0 – Ψmax = 73.2

Table 2
Dimensions of the studied hollow blocks

Aspect ratio l (m) h (m) ex (m) ey (m) Ac = h/l

Ac = Ac1 ≈ 1/4 0.13 0.035 0.025 0.02 0.26
Ac = Ac2 ≈ 1/2 0.13 0.07 0.025 0.02 0.53
Ac = Ac3 ≈ 1 0.13 0.1 0.025 0.02 0.77

Table 3
Adopted grids for each studied type of hollow block

Aspect ratio Grid Grid in each cavity

Ac = Ac1 ≈ 1/4 80 × 20 17 × 17
Ac = Ac2 ≈ 1/2 80 × 30 17 × 27
Ac = Ac3 ≈ 1 80 × 40 17 × 37
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on the relative change in the variables U , V , P , θ and Qr at
different nodes of the calculation domain:∣∣∣∣f n+1(i, j) − f n(i, j)

f n(i, j)

∣∣∣∣ � 10−4

where f n(i, j) is the variable f (f = U,V,P, θ,Qr) value at
node (i, j) calculated at iteration n.

3. Results and discussions

Generally, in practical situations such as that studied here,
the geometrical parameters of the system under investigation
are fixed. Therefore, the thermal behavior of this system is func-
tion only of the thermal excitations (To and Ti ). Furthermore,
it is recognized that in problems where the natural convection
is coupled to the radiation, the heat transfer rate does not de-
pend only on the temperature difference �T but depends of the
values of To and Ti (or Ti and �T ). For these reasons, the gov-
erning parameters that will be used in the present analysis are
To and Ti instead of Ra and Nr .

The hollow blocks considered are in light concrete, char-
acterized by a thermal conductivity ks = 0.5 W m−1 K−1

and emissivity ε = 0.9. The air thermal conductivity kf and
diffusivity αf are equal to 0.0262 W m−1 K−1 and 1.57 ×
10−5 m2 s−1 respectively. The Prandtl number is Pr = 0.71.
The Rayleigh number (Ra) and the radiation to conduction
number (Nr ) are functions of the temperatures To and Ti . Re-
sults are presented for Ti = 20 ◦C and 1 ◦C � �T � 30 ◦C:
To = Ti − �T for the heating from below case and To = Ti +
�T for the heating from above case. This range covers the tem-
perature differences that occur in practice and it corresponds to
3.97 × 104 � RaH � 7.75 × 106 and 2.089 � Nr � 117.006.

3.1. Hollow blocks heated from below

3.1.1. Streamlines and isotherms
3.1.1.1. Effect of the temperature difference �T . Figs. 4(a)–
4(c) show the streamlines contours (at the top) and the isotherms
(at the bottom) obtained for �T = (Ti − To) = 5 ◦C, 15 ◦C
and 30 ◦C respectively. It can be seen that, the flow struc-
tures in each hollow block are characterized by two adjacent
cells circulating in opposite directions and which are not per-
fectly symmetrical. As expected, the size of the central cell
increases slightly when �T increases (from (a) to (c)) indicat-
ing a flow intensity increase. In fact, the values of the maximum
stream function Ψmax for the central streamline are 11.43 for
�T = 5 ◦C, 43.59 for �T = 15 ◦C and 60.28 for �T = 30 ◦C.

Concerning the temperature field, the isotherms distortion
in the cavities is due to the natural convection heat transfer. In
the solid walls separating the cavities the temperature profile is
almost linear for �T = 5 ◦C (Fig. 4(a)). This linear character is
violated progressively when �T increases (Figs. 4(b) and (c)).
The concentration of the isotherms near the horizontal surfaces
of the cavities indicates an important gradient of temperature in
these regions due to the great difference between the solid and
the fluid conductivities (Nk = 0.0524).
Fig. 4. Streamlines and isotherms obtained in heating from below for Ac = Ac2
and: (a) �T = 5 ◦C; (b) �T = 15 ◦C; (c) �T = 30 ◦C.

3.1.1.2. Effect of the aspect ratio of internal cavities Ac. For
�T = 20 ◦C, Figs. 5(a)–(c) present the streamlines and the
isotherms obtained respectively for Ac = Ac1,Ac = Ac2 and
Ac = Ac3. Examination of the flow structures obtained for each
value of Ac, shows that the number n of cells in each cavity
is almost equal to the inverse of the aspect ratio of this cav-
ity (n ≈ 1/Ac). In fact, for a small aspect ratio (Ac ≈ 1/4) the
flow is characterized by four small cells (n = 4) of low inten-
sity (Ψmax = 16.2). When the aspect ratio increases the number
of cells decreases. Then, for (Ac ≈ 1/2) the flow is character-
ized by tow symmetrical cells (n = 2) with a moderate intensity
(Ψmax = 43.59) while for a great aspect ratio (Ac ≈ 1) the flow
is more intensive (Ψmax = 82.03) and is characterized by a sin-
gle cell (n = 1). The flow intensity increase is due to the natural
convection which finds more space to be developed. The nar-
rowing of isotherms at the bottom of the cavity in each case
indicates a good heat transfer near the active walls. Results ob-
tained for Ac ≈ 1/4 and Ac ≈ 1/2 show that the central vertical
axis of the hollow block is a symmetry axis for both flow and
heat transfer. This result can be used to reduce the calculation
domain to the half of the system. This permits significant re-
duction of the computational time.
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Fig. 5. Streamlines and isotherms obtained in heating from below for
�T = 20 ◦C and different aspect ratios: (a) Ac = Ac1; (b) Ac = Ac2; (c)
Ac = Ac3.

3.1.2. Effect of the boundary conditions imposed on the
vertical walls

Tests on both flow and heat transfer were made on the influ-
ence of the periodicity or the adiabaticity conditions imposed
on the system vertical limits. These tests showed that the flow
nature and the temperature distribution obtained for the two
conditions are similar. Concerning the heat flow, Fig. 6 shows
the variations of the mean vertical heat flux Q (W m−2) through
the system as a function of the temperature difference �T (◦C)
between the horizontal surfaces. As shown, there is an excel-
lent agreement between the results obtained by applying the two
boundary conditions. In fact, the differences observed are lower
than 0.4%. However, it has been recorded that the periodicity
condition permits fast convergence of the numerical solution.
It should be noted that the overall heat transfer through the
system varies almost linearly with the temperature difference
�T between the top and bottom surfaces. This is mainly due to
the dominance of the conduction heat transfer which represents
59.3% from the overall heat transfer for �T = 10 ◦C, 56.1%
for �T = 20 ◦C and 51.8% for �T = 30 ◦C.
Fig. 6. The effect of adiabaticity and periodicity conditions on the global heat
flow.

3.1.3. Heat transfer by radiation
The results presented in this part have been carried out for

the case Ac ≈ 1/2,�T = 30 ◦C and Ti = 20 ◦C. For the three
cavities of the block, Fig. 7 gives the distributions of the di-
mensionless radiative heat flux Qr exchanged by the horizontal
surfaces (Fig. 7(a)), the vertical left surface (Fig. 7(b)) and the
vertical right one (Fig. 7(c)). Theses figures give the variation
of Qr as a function of the positions Xc and Yc counted from the
left lower corner of the cavity. It can be seen that the heat flux
received by the upper horizontal surface (cold surface) reaches
its maximum near the middle of the surface (Xc = 0.125) and
decreases toward the corners. However, for the lower horizon-
tal surface (hot surface), a slight diminution of the radiative
heat transfer is observed near the middle of the surface. This
diminution can be explained by the attenuation of the radiation
by the natural convection which is maximum at this level (see
Fig. 8(a)). This phenomenon which will be discussed in detail
in Section 3.1.4. is not appreciable on the upper horizontal sur-
face of the cavity. The radiative heat transfer distributions in
the three cavities of the hollow structure are similar. The dif-
ference observed between radiative heat fluxes in the cavities
(1) and (3) on one hand and the cavity (2) on the other hand is
negligible and is due to the edge effects resulting from the adia-
baticity conditions that are imposed on the vertical sides of the
structure.

Concerning the radiative behavior of the vertical sides,
Figs. 7(b) and (c) show that, as expected, the lower parts of
theses sides lose the heat by radiation while the upper parts re-
ceive it with a practically void radiative heat flux in the central
regions. However, the rate of heat exchanged by radiation at the
vertical surfaces is very weak compared to that exchanged by
the horizontal sides.

3.1.4. Convection heat transfer
Since each cavity has four conducting walls, it is more in-

teresting to evaluate the dimensionless convective heat flux re-
ceived by the fluid (Qconv) on each one of these walls. For
Ac ≈ 1/2,�T = 30 ◦C and Ti = 20 ◦C Fig. 8 gives the vari-
ation of Qconv along the horizontal and vertical faces of the
cavities (1)–(3). For the lower horizontal face of each cavity
(Fig. 8(a)), Qconv reaches its maximum value near the middle
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Fig. 7. Variations of the dimensionless radiative heat flux on the internal cavities
surfaces: (a) horizontal faces; (b) left vertical faces; (c) right vertical faces.

of the surface (Xc = 0.125) where the temperature gradient is
very intense. This have been shown clearly in the temperature
distribution given in Fig. 4 which shows significant fall of tem-
perature at the level of the central vertical axis of the cavity.
This fall of temperature is due to the movement of the fluid
going down after having released the heat which transported
to the upper parts of the cavity. For the upper horizontal sur-
faces, the maximum of convective heat transfer is always at the
level of the central parts but the variation of the Qconv with
Xc is relatively moderate. It should be noted that for the lower
horizontal surfaces there are appreciable differences near the
maximum between the results obtained for the cavities (1)–(3).
These differences can be justified by the edge effects mentioned
previously in Section 3.1.3. The results obtained for the verti-
cal surfaces (Fig. 8(b)) show that the fluid heated by the lower
Fig. 8. Variations of dimensionless convective heat flux along the: (a) horizontal
faces; (b) vertical faces.

Fig. 9. Variations of the overall dimensionless heat flux through the structure as
a function of X for Ac = Ac2 and �T = 30 ◦C.

horizontal wall continues to receive heat from the lower parts of
the vertical walls, which are heated by conduction, and begins
to restore the heat at the higher parts of the solid matrix of the
structure. However, the convective heat transfer on the vertical
surfaces remains very lower than that on the horizontal surfaces.

3.1.5. Overall heat transfer in the vertical direction
Fig. 9 obtained for Ti = 20 ◦C, �T = 30 ◦C and Ac = Ac2 ≈

1/2 gives the distribution of the local dimensionless heat flux
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(qa = (− ∂θs

∂Y
)Y=0,1) crossing the lower face (Y = 0) of the

block and the upper one (Y = 1) as a function of the position X.
As expected, the heat transfer through the lower surface is more
significant opposite to the cavities and is maximum in front of
the centers of cavities. This can be explained by the significant
temperature gradient between the hot solid wall and the cold
fluid that comes down along the vertical axis of the cavity (see
Figs. 4 and 5). The heat flow decreases towards the corners of
the cavities. Also, the heat flux through the lower face presents
small peaks at the center of the vertical solid walls, which are
due essentially to the conduction heat transfer in the vertical
direction. These small peaks indicate that the conductive heat
transfer through a vertical solid partition separating too adja-
cent cavities is limited by the fact that the fluids circulating on
both sides of this wall tend to homogenize the temperature in
the upper part of the partition. For the upper horizontal side of
the structure, the situation observed above (for the lower side)
is reversed and the heat flux is maximum at the medium of the
vertical partitions heated by both conduction and convection
and reaches its minimal value at the level of the central vertical
axis of the cavity where the temperature gradient is extremely
weak.

3.2. Heating from above

In practice, the temperature of the upper surface of the block
can be inferior or superior to that of the lower surface. This jus-
tifies the other situation where the hollow block is heated from
above. For �T = (To − Ti) = 15 ◦C and Ti = 20 ◦C, Fig. 10
illustrates the streamlines and the isotherms obtained for the
three types of hollow blocks. As expected, the analysis of the
temperature field shows that the heat transfer in each medium
(solid wall or air) is almost linear and is done mainly by con-
duction and radiation. The small distortions of the isotherms
are due to the difference between the conductivities of the solid
and the fluid. Concerning the streamlines (Fig. 10(a)), the small
cells which appear in each cavity are due to a fluid flow of
low intensity resulting from the variation in temperature cre-
ated by conduction and radiation in the corners of the cavities.
The nature of the flow and the temperature distribution are not
significantly affected by the aspect ratio because of the absence
of convection heat transfer.

3.3. Global heat transfer

To study the variation of the overall heat transfer across the
structure as a function of the temperature difference �T , it is
useful to calculate the contribution of each heat transfer process
in the overall heat flux Q. Then, at Y = Y0, dimensionless heat
fluxes by conduction (Qcond), convection (Qconv) and radiation
(Qrad) are given respectively by:

Qcond = − H

ex1

ex1
H∫

0

∂θs

∂Y

∣∣∣∣
Y=Y0

dX − H

ex2

ex1+ex2+l

H∫
ex1+l

∂θs

∂Y

∣∣∣∣
Y=Y0

dX
H

Fig. 10. Streamlines (a) and isotherms (b) obtained in heating from above for
�T = 15 ◦C and different Ac .

− H

ex3

ex1+ex2+ex3+2l

H∫
ex1+ex2+2l

H

∂θs

∂Y

∣∣∣∣
Y=Y0

dX

− H

ex4

L
H∫

(L−ex4)

H

∂θs

∂Y

∣∣∣∣
Y=Y0

dX

Qconv = −H

l
Nk

[ ex1+l

H∫
ex1
H

∂θf

∂Y

∣∣∣∣
Y=Y0

dX +
ex1+ex2+2l

H∫
ex1+ex2+l

H

∂θf

∂Y

∣∣∣∣
Y=Y0

dX

+
L−ex4

H∫
L−ex4−l

∂θf

∂Y

∣∣∣∣
Y=Y0

dX

]

H
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Table 4
Percentages of the contribution of each heat transfer process

�T (◦C) % Qcond % Qconv % Qrad

5 60.93 10.89 28.18
10 59.3 12.1 28.6
20 56.1 14.6 29.3
30 51.8 16.01 32.19

Table 5
Overall thermal conductances for different type hollow blocks heated from be-
low and from above

Aspect ratio U ′
b

(W m−2 K−1) U ′
a (W m−2 K−1)

Ac=Ac1 ≈ 1/4 4.83 3.92
Ac=Ac2 ≈ 1/2 4.12 3.15
Ac=Ac3 ≈ 1 3.63 2.83

Qrad = H

l
Nr

[ ex1+l

H∫
ex1
H

Qr(X)dX +
ex1+ex2+2l

H∫
ex1+ex2+l

H

Qr(X)dX

+
L−ex4

H∫
L−ex4−l

H

Qr(X)dX

]

Table 4 gives the contributions of the three processes in the
overall heat transfer for Ac = Ac2 ≈ 1/2 and different values
of �T . As expected, the conduction is predominant because it
represents more than 50% of the overall heat flux Q. The con-
tribution of the radiation heat transfer is about 30%. Finally, the
convection contribution does not exceed 20% in all processed
cases.

The variation of the mean heat flow crossing the hollow
blocks as a function of the temperature difference �T had been
presented in Fig. 6. This variation is practically linear in spite
of the non linear character of heat transfers by convection and
radiation in the inner cavities. This is due to the predominance
of the conduction heat transfer shown previously.

Taking into account this pseudo-linear behavior, an overall
conductance U ′ can be derived that permits fast and easy pre-
diction of the overall heat transfer through the hollow structure
for a given temperature difference �T between its upper and
lower surfaces. Then, the mean heat flux Q can be expressed
as:

Q = U ′.�T (14)

where U ′ is the mean of the conductances U ′
i = Qi

�Ti
(i = 1, n)

obtained for n different values of �T i . So, U ′ is given by:

U ′ = 1

n

∑
U ′

i = 1

n

n∑
i=1

Qi

�Ti

For each hollow block, there are two conductances corre-
sponding to the two types of heating: heating from below (U ′

b)
and from above (U ′

a). Table 5 gives the thermal conductances
generated for the three considered types of hollow blocks. As
expected, for a given hollow block, the U ′

a value is very lower
Fig. 11. Comparison of the global heat flux calculated by the code of simulation
and these one predicted by the overall conductances for the structure in the
cases: (a) heated from below; (b) heated from above.

than the U ′
b one because of the absence of natural convection

in the heating from above case. The relative difference between
the two values of U ′ is about 23.2% for Ac ≈ 1/4 and 28.3%
for Ac ≈ 1. Also, the results obtained (Fig. 11) show that the
U ′

b and U ′
a values decreases significantly when Ac increases in

spite of the increase of the convection heat transfer rate outlined
when the blocks are heated from below. This is mainly due to
the diminishing of the conduction heat transfer rate when the
air space in the vertical direction (y direction) increases. The
reduction of the U ′

b value is about 14.7% when Ac vary from
1/4 to 1/2 and about 24.8% when Ac passes from 1/4 to 1.
The reduction of the U ′ value is more pronounced for the heat-
ing from above case. In fact, the relative change in U ′

a values is
about 19.6% between Ac ≈ 1/4 and Ac ≈ 1/2 and 27.8% be-
tween Ac ≈ 1/4 and Ac ≈ 1. This is due to the fact that in the
heating from below cases the natural convection rate increases
when Ac does and tends to homogenize the temperature dis-
tribution in the cavities inducing a reduction of the radiation
heat exchanges between the inner sides of each cavity. There-
fore the reduction of U ′

b value when Ac increases is lower than
that of U ′

a .

3.4. Comparison of the thermal conductances U ′ with those
obtained in the literature

The model proposed in this work is applied to predict ther-
mal conductances given by the Scientific and Technical Cen-
ter of Building (CSTB) [14]. Table 6 gives the values of U ′
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Table 6
Comparison of the overall thermal conductances obtained by our model with those of Ref. [14]

Our results (W m−2 K−1) Results obtained in Ref. [14] (W m−2 K−1)

U ′
(ks = 1.4 W m−1 K−1)

U ′
(ks = 0.7 W m−1 K−1)

U ′
(ks = 1.4 W m−1 K−1)

U ′
(ks = 0.7 W m−1 K−1)

(h = 12.4 cm) 7.346 5.05 7.692 5.263
(h = 8.4 cm) 8.850 6.255 9.09 6.250
for concrete hollow blocks with ks = 1.4 W m−1 K−1, or ks =
0.7 W m−1 K−1, exi(i = 1 to 4) = 1.8 cm, ey1 = 1.8 cm, ey2 =
5.8 cm, l = 16 cm, h = 12.4 cm or h = 8.4 cm. It should be
noted that, in Ref. [14], the effect of convection heat transfer
in the heating from below case is neglected. This approxima-
tion can be justified by the results obtained in the present work
which show that the effect of convection heat transfer is not
much important compared to both conduction and radiation
heat transfers. As it can be seen, there is a very good agreement
between the results of the present work and those presented in
Ref. [14]. In fact, the maximum differences induced does not
exceed 4.5%.

4. Conclusion

Interactions between heat transfers by natural convection,
conduction and radiation in horizontal hollow blocks, heated
from below or from above, have been studied numerically. It
had been shown that the thermal behavior of the block and the
flow structures in the inner cavities depend strongly of the cav-
ities aspect ratio. The variation of the overall heat flux through
the hollow block as a function of the temperature difference be-
tween the horizontal sides of the block has been found to be
almost linear because of the predominance of the conduction
heat transfer. So, overall thermal conductances have been gen-
erated for the two types of heating (heating from below or from
above). The conductances permit fast and accurate prediction
of combined heat transfers through the different hollow blocks
considered without solving the complex problem of the cou-
pling between the three mechanisms of heat transfer.
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